Exploratory fMRI Analysis without Spatial Normalization
نویسندگان
چکیده
We present an exploratory method for simultaneous parcellation of multisubject fMRI data into functionally coherent areas. The method is based on a solely functional representation of the fMRI data and a hierarchical probabilistic model that accounts for both intersubject and intra-subject forms of variability in fMRI response. We employ a Variational Bayes approximation to fit the model to the data. The resulting algorithm finds a functional parcellation of the individual brains along with a set of population-level clusters, establishing correspondence between these two levels. The model eliminates the need for spatial normalization while still enabling us to fuse data from several subjects. We demonstrate the application of our method on a visual fMRI study.
منابع مشابه
Visual Processing Strategies Underlying Expertise in the Fusiform Face Area and Lateral Occipital Cortex
............................................................................................................................ iii Acknowledgements .......................................................................................................... iv List of Figures .................................................................................................................... x List o...
متن کاملBrain Activity Map Extraction of Neuromyelitis Optica Patients Using Resting-State fMRI Data Based on Amplitude of Low Frequency Fluctuations and Regional Homogeneity Analysis
Introduction: Neuromyelitis Optica (NMO) is a rare inflammatory disease of the central nervous system which generally affecting the spinal cord and optic nerve. Damage to the optic nerve can result in the patient's dim vision or even blindness, while the spinal cord damage may lead to sensory and motor paralysis and the weakness of the lower limbs in the patient. Magnetic Reson...
متن کاملImproving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase
Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...
متن کاملICA-fNORM: Spatial Normalization of fMRI Data Using Intrinsic Group-ICA Networks
A common pre-processing challenge associated with group level fMRI analysis is spatial registration of multiple subjects to a standard space. Spatial normalization, using a reference image such as the Montreal Neurological Institute brain template, is the most common technique currently in use to achieve spatial congruence across multiple subjects. This method corrects for global shape differen...
متن کاملAdaptive Analysis of Functional MRI Data
Functional Magnetic Resonance Imaging (fMRI) is a recently developed neuroimaging technique with capacity to map neural activity with high spatial precision. To locate active brain areas, the method utilizes local blood oxygenation changes which are reflected as small intensity changes in a special type of MR images. The ability to non-invasively map brain functions provides new opportunities t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Information processing in medical imaging : proceedings of the ... conference
دوره 21 شماره
صفحات -
تاریخ انتشار 2009